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Abstract

Thermal marginal instability of magnetohydrodynamic
micropolar fluid layer heated from below has been investigated. The
momentum, angular momentum, energy and maxwell equations are
solved by normal mode analysis with free boundaries of the layer. The
marginal instability effects of the pertinent parameters like magnetic
field, coupling parameter, micropolar heat conduction parameter
and micropolar coefficient are observed and predicted by the graphs.
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Introduction

Thermal instability of a fluid layer heated from below has been studied by many
researchers. Bénard [1] in 1900 did an experiment of a fluid layer heated from below and
observed a thermal instability. The theoretical analysis of Bénard’s experiment has been
studied by Rayleigh [2] and this analysis has also received a considerable importance due
to its relevance in various fields such as chemical and industrial engineering, soil mechanics,
geophysics etc. The main objectives of the various studies related to the thermal instability,
in particular, is to determine the critical Rayleigh number at which the onset of instability
sets in either as stationary convection or through oscillations.

The Rayleigh-Bénard convection in micropolar fluids heated from below has been
extensively studied by Ahmadi [3], Datta and Sastry [4], Bhattacharyya and Jena [7], L.E.
Payne and B. Straughan [5]. The common results of all these studies are found that the
stationary convection is the preferred mode of instability and the microrotation has a stability
effect on the onset of Rayleigh-Bénard convection. An excellent review as well as large
number of new developments are given by Chandrasekhar [6] in his celebrated book on
hydrodynamic and hydromagnetic stability. In these methods of stability study a linear theory
is usually employed i.e., the equations governing the disturbances are linearized and then
the grow or decay of the disturbances is studied. The effect of a magnetic field on the
onset of convection in a horizontal micropolar fluid layer heated from below has also been
investigated by several researchers. The extension of micropolar flows to include magneto-
hydrodynamics effects is of interest in regard to various engineering applications such as in
the design of the cooling systems for nuclear reactors, MHD electrical power generation,
shock tubes, pump, flow meters etc. The effects of throughflow and magnetic field on the
onset of Bénard convection in a horizontal layer of micropolar fluid confined between two
rigid, isothermal and microrotation free, boundaries have been studied by Narasimha Murty
[9]. Z Alloui and P. Vasseur [10] studied onset of Rayleigh-Bénard MHD convection in a
micropolar fluid.

R.C. Sharma and P. Kumar [8] studied the effect of magnetic field on micropolar
fluids heated from below and they also studied the effects of magnetic field on micropolar
fluids heated from below in porous medium. In both papers, they found that in the presence
of various coupling parameters, magnetic field has a stabilizing effect on stationary
convection.

In this paper, I studied thermal instability of magnetohydrodynamic micropolar
fluid layer and it is found that the Chandrasekhar number has a significant role in the
investigation of the nature of magnetic field. To the best of my knowledge this problem is
investigated so far.
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Mathematical Modelling

Consider a two dimensional horizontal, electrically non-conducting, incompressible
micropolar fluid layer of thickness d. This layer is heated from below such that the lower

boundary is held at constant temperature 0T T  and the upper boundary is held at fixed

temperature 1T T so that a uniform temperature gradient 
dT

dz
   is maintained. The

physical geometry is one of infinite extent in x and y directions bounded by the planes 0z 
and z d . The whole system is acted on by gravity force (0, 0, )gg .

Fig. 1
A uniform magnetic field 0( , 0, 0)HH


 is applied along x-direction and the magnetic

Reynolds number is assumed to be small, so that the induced magnetic field can be neglected
in comparison with the applied magnetic field.

Using Boussinesq approximation, the governing equations of the problem describe

the as follows:
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Where 0 0, , , , , , , , , , , , , , ,e v Tp j C T t T            q N
 , ˆ ze and m   denote

respectively fluid velocity, microrotation, pressure, fluid density, reference density, fluid
viscosity, coupling viscosity coefficient, magnetic permeability, microinertia coefficient,
micropolar viscosity coefficients, specific heat at constant volume, temperature, time, thermal
conductivity, micropolar heat conduction coefficient, coefficient of thermal expansion,
reference temperature, unit vector along z-direction and the magnetic viscosity.

Perturbation Solutions
Using basic state (0, 0, 0)b q q
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 and perturbations  in , the governing equations (1) to
(7) in linear form become
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Further using the following non-dimensional transformations
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, where TK  is the thermal diffusivity and
ignoring the stars, the equations (8) to (12) yield
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Prandtl number.

Boundary Conditions

Consider that both the boundaries of the problem are free and perfectly heat
conducting so that
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Dispersion Equations

Applying Curl operator to the equations (13) to (17), these equations reduce to
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Normal Mode Analysis
Applying the following normal mode transformations
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Using (32), equations (26) to (31) yield
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Using the boundary conditions (32) and (33), it is obtained
2 0nD W   at 0, 1z  , where n is a positive integer..

Thus, the proper solution W characterizing the lowest mode is

0 sinW W z  (34)
Where 0W  is a constant.

Eliminating , , , ,G M X B  between (26)-(31), the resulting equation is simplified
after substituting W from (34) as
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Marginal Instability

For the stationary marginal state setting 0   in (35), I obtain
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In the absence of magnetic field ( 0)Q   and coupling parameter ( 0)  , equation
(36) reduces to
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Which is the same as proposed by [Goodarz Ahmadi].

In the absence of magnetic field ( 0)Q  , the equation (36) reduces to
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Which is the same as proposed by [L.E. Payne and B. Straughan] and [Y. Qin
and P.N. Kaloni].

Putting 
K

A
C

  in equation (36), it becomes
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In order to investigate the effects of magnetic field Q, coupling parameter K,

micropolar heat conduction parameter   and micro coefficient A, we examine the behaviour

of , ,
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.
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It is observed here that  is always positive when 
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Differentiating both sides of (37) with respect to K, I get
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effect, if 
1

A
 

Differentiating both sides of (37) with respect to , I get
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which is always positive, thus, the micropolar heat conduction parameter   has
stabilizing effect.

Differentiating both sides of (37) with respect to A, I get
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Now 0
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  if 2
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P K
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Thus, the micropolar coefficient A has stabilizing effect if 2
r
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P K
Q
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

δ .

In the absence of ( 0), 0
dR

dA
 δ δ , which predicts that the micropolar coefficient

A has destabilizing effect.
Results and Conclusions

1. The magnetic field has stabilizing effect when 
1

A
 

2. The coupling parameters K has a stabilizing effect if 
1

A
 

3. The micropolar heat conduction parameter   has stabilizing effect.
4. The micropolar coefficient A has stabilizing effect when 2

r

x m

P K
Q

k P



5. In the absence of micropolar heat conduction parameter, the micropolar coefficient
has destabilizing effect.

Graphical Representation
With the help of excel programming the variation of thermal Rayleigh number with

respect to Magnetic field (Q), Coupling parameter (K), Micropolar heat conduction
parameter (  ), Micropolar coefficient (A) are shown by the following graphs:

Fig. 2: Marginal instability curve for the variation of R vs Q

                            for A=0.5, K=1, P
r
=2, P

m
=4, δ = 0.5, =0.5
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Fig. 3: Marginal instability curve for the variation of R vs K
for A=0.5, P

r
=2, P

m
=4, Q=10, =0.05, = 0.5.

Fig. 4: Marginal instability curve for the variation of R vs
for A=0.5, P

r
=2, P

m
=4, K=1, =0.05, Q=20.
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Fig. 5: Marginal instability curve for the variation of R vs A
for a=1, P

r
=2, P

m
=4, K=1, =0.05, =0.05

Fig. 6: Marginal instability curve for the variation of R vs A
for =0, P

r
=2, P

m
=4, K=1, =0.05, a=1.
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